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Benchmark Algorithms:

Motivation: Random features has been widely used for kernel approximation in Formulation of Canonical Correlation Analysis » Random Fourier Features (RFF) with ¢ = cos(x'w + b) as the feature map to
large-scale machine learning. A number of recent studies have explored data-dependent » Linear Canonical Correlation Analysis is a method of correlating linear relationships approximate the Gaussian kernel.
sampling of features, modifying the stochastic oracle from which random features are between two multi-dimensional random variables X = [X1,...,X,]" € R™% and » Orthogonal Random Features (ORF) with ¢ = [cos(X ' w), sin(x w)] as the feature
sampled. While proposed techniques in this realm improve the approximation, their Y =[yi,...,¥n]" € R™%. The canonical correlations are the eigenvalues of the map.
application is !imited to a specific Iearr.]ing task. In this work, we propose a geqeral sqoring following matrix 1 » Leverage Score (LS) with ¢ = cos(x'w + b) as the feature map.
;Lgrigogjjir:tﬂggtfndom iealures, which can be employedfor various applcations Wit [(Zxx +0MXI) (= +0 |)1] [):0 Zgy ] : (6) » Energy-based Exploration of Random Feat_ures (EEBF) with_ ¢ = cos()gTw + b) as
| | Sy T Hy yx _ | | the feature map. EERF only works for supervised learning and is only suitable for

Notation: » Kernel Canonical Correlation Analysis (KCCA) correlates nonlinear relationships of two comparison with ORCCA1.

: random variables in Reproducing Kernel Hilbert Space. The kernel canonical Practical Consideration:

tr[-] denotes the trace operator. E [-] denotes the expectation operator. [A]; denotes the jj-th

. . . . correlations are the eigenvalues of the following matrix
entry of matrix A. X, denotes the covariance matrix of random variables X and Y. J J

» We work with empirical copula transformation of datasets.

o [(Kx + )™ 0 1] [ 0 Ky] | » For X domain, the variance of random features oy is set to be the inverse of
Random features and kernel approximation: 0 (Ky + )] [Kx O mean-distance of 50-th nearest neighbour (in Euclidean distance), o, = oy.
> {x;}7_, is a set of given points where x; € X C R%forany i € {1,...,n}. > We assume iy = j1y = fi. » For EERF, LS, and ORCCAZ2, the pool size is My = 10M.
> Consider any kernel function in the following form » Maximizing the total canonical correlations will then be equivalent to maximizing > The regularization parameter \ for LS is chosen through grid search.
) ) o . P
k(x,X') = / H(X, W)X, w)p(w)dw, (1) tr{(Ky + ul) " "K, (K, + 2d) 'K, ). » The regularization parameter is set to by . = 107°.
Q
where ¢(X,w) : R% — R is a feature map parameterized by w € R%. Following (1), the Proposition: To maximize total canonical correlations, we should use the following center SEIZURE DETECTION MNIST ADULT O ENERGY USE
kernel function can be approximated as matrix = =
B = (Ki+ 1) 'Ky (Ky + )™ (7) =
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Then, the kernel matrix [K]; = k(x;, X;) can be approximated with ZZ" where Z ¢ R™M Algorithm 1 Optimal Randomized Canonical Correlation Analysis 2 (ORCCAZ2) Ny )
is defined as Input: X € R"™&=Y € R4 the feature map ¢(-,-), an integer My, 7 ° 7
N an integer M, the prior densities p,(w) and p,(w), the parameter p > i i i : i : 2
Z:—W[z(m),...,z(w,\/,)]. (2) 0. . S 5e =

: . C : 1: Draw samples {w Mo according to w), and {w Mo gccording to w),
» The low-rank approximation above can save significant computational cost when respectivel? (Wi by 8 to pu(w) t@yan by 3 to py(w)

M < n. 2: Construct the matrices
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The General Scoring Rule for random features P=(2,Z,+ul)""'Z,Z,.
Figure: The plot of total canonical correlations obtained by different algorithms versus the number of features.

where Z, and Z, are defined in (1).

Let B be a positive definite matrix. We propose the following score function for any w € Q 3: Let for i € [Mo] Performance: Judging from the plots, choosing B according to our theory will give a
significant boost in increasing the total canonical correlations.

o(w) 2 p(w)z' (w)B2(w) p(w)z'(w)B z(w) 3) 7w ) = 1P
Epw)[2' (w)B z(w)] tr[KB] ’ STV Ty [QP] —
. . . . Current and Future Directions
where p(w) is the original probability density of random features. The new weights Qg = [Gx(w1), ..., Gx(war, )] "
» The key advantage of the score function is that B can be designed to improve sampling 4: Let for ¢ € [My]
depending on the learning task. Together with another member of the triad, Dr. Simon Foucart (MATH), we are
» Setting B = (K + Al)~1in (3) can precisely recover leverage score (LS) sampling Gy (wy.i) = PQli . investigating learning problems from an Optimal Recovery perspective. This framework
T 1 Tr[PQ) considers learning with non-random data, where generalization in statistical sense is no
_ Plw)z W)(K+ ) z(w) 4 - " | licable. We have looked at the notion of worst- in Hilbert d
qrs(w) = KK - AD)- 1] . (4) The new weights G, = [Gy(w1), ..., Gy (war )] " - onger applicable. We have looked at the notion of worst-case error in Hilbert spaces an

Mo

5: Select top M features with the highest scores from each of the pools {w, ;1 and showed that Optimal Recovery provides a formula which is user-friendly from an

> Setting B =yy' in (3) can equivalently recover Energy-based Exploration of Random 1Mo - =~ ~ : algorithmic point-of-view. Our future directions include specific problems arising in Optimal
Features (EERF) {Awy’Z}i:1’z\?CCOleAng i thez\?ew sores dy and Gy 1o construct the ransformed matrices Rgcover sﬁch as robustness to measurement noise 0\'/3er- argmeterized Iear%in "
Z, € R"*M and Z, € R"*™ | respectively, as in (1). y; ; P g,

1 R R . . |
qEERF(w) X |— Zy,-gb(x,-, w) : (5) Output: Linear canonical correlations between Z, and Z, (with regularization parameter nonlinear hypothe3|s classes, and beyond
n
=1

1) as in (6).
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5 4 1 'D(w1)z( ) p(wM)z( \ that algorithm ORCCAA1.
— UM IV g glom) M | » ORCCAZ2 is designed for nonlinear kernel in Y domain.

- - » The algorithms are derived through replacing the true kernel K in (7) with ZZ".
to form an unbiased approximation of the kernel matrix K.

The 2020 President’s Excellence Fund Symposium, Texas A&M University Sept. 28, 2020



