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Random Features and Kernel Approximation

Motivation: Random features has been widely used for kernel approximation in
large-scale machine learning. A number of recent studies have explored data-dependent
sampling of features, modifying the stochastic oracle from which random features are
sampled. While proposed techniques in this realm improve the approximation, their
application is limited to a specific learning task. In this work, we propose a general scoring
rule for sampling random features, which can be employed for various applications with
some adjustments.

Notation:
tr[·] denotes the trace operator. E [·] denotes the expectation operator. [A]ij denotes the ij-th
entry of matrix A. Σxy denotes the covariance matrix of random variables X and Y.

Random features and kernel approximation:
I {xi}n

i=1 is a set of given points where xi ∈ X ⊆ Rdx for any i ∈ {1, . . . ,n}.
I Consider any kernel function in the following form

k(x,x′) =

∫
Ω

φ(x,ω)φ(x′,ω)p(ω)dω, (1)

where φ(x,ω) : Rdx → R is a feature map parameterized by ω ∈ Rdx . Following (1), the
kernel function can be approximated as

k(x,x′) ≈ 1
M

M∑
m=1

φ(x,ωm)φ(x′,ωm),

{ωm}M
m=1 are independent samples from p(ω), called random features.

I Let us now define

z(ω) , [φ(x1,ω), . . . , φ(xn,ω)]>.

Then, the kernel matrix [K]ij = k(xi,xj) can be approximated with ZZ> where Z ∈ Rn×M

is defined as

Z ,
1√
M

[z(ω1), . . . , z(ωM)]. (2)

I The low-rank approximation above can save significant computational cost when
M � n.

The General Scoring Rule for random features

Let B be a positive definite matrix. We propose the following score function for any ω ∈ Ω

q(ω) ,
p(ω)z>(ω)B z(ω)

Ep(ω)[z>(ω)B z(ω)]
=

p(ω)z>(ω)B z(ω)

tr[KB]
, (3)

where p(ω) is the original probability density of random features.
I The key advantage of the score function is that B can be designed to improve sampling

depending on the learning task.
I Setting B = (K + λI)−1 in (3) can precisely recover leverage score (LS) sampling

qLS(ω) =
p(ω)z>(ω)(K + λI)−1z(ω)

tr[K(K + λI)−1]
. (4)

I Setting B = yy> in (3) can equivalently recover Energy-based Exploration of Random
Features (EERF)

qEERF(ω) ∝

∣∣∣∣∣1n
n∑

i=1

yiφ(xi,ω)

∣∣∣∣∣ . (5)

I If random features are sampled from the score function (3), the transformed matrix will
be

Z̃ ,
1√
M

√p(ω1)

q(ω1)
z(ω1), . . . ,

√
p(ωM)

q(ωM)
z(ωM)

 ,
to form an unbiased approximation of the kernel matrix K.

Adaptation to Canonical Correlation Analysis

Formulation of Canonical Correlation Analysis
I Linear Canonical Correlation Analysis is a method of correlating linear relationships

between two multi-dimensional random variables X = [x1, . . . ,xn]> ∈ Rn×dx and
Y = [y1, . . . ,yn]> ∈ Rn×dy . The canonical correlations are the eigenvalues of the
following matrix [

(Σxx + µx I)−1 0
0 (Σyy + µy I)−1

] [
0 Σxy

Σyx 0

]
. (6)

I Kernel Canonical Correlation Analysis (KCCA) correlates nonlinear relationships of two
random variables in Reproducing Kernel Hilbert Space. The kernel canonical
correlations are the eigenvalues of the following matrix[

(Kx + µx I)−1 0
0 (Ky + µy I)−1

] [
0 Ky

Kx 0

]
.

I We assume µx = µy = µ.
I Maximizing the total canonical correlations will then be equivalent to maximizing

tr[(Kx + µI)−1Ky(Ky + µI)−1Kx ].

Proposition: To maximize total canonical correlations, we should use the following center
matrix

B = (Kx + µI)−1Ky(Ky + µI)−1. (7)

Algorithm

Algorithm 1 Optimal Randomized Canonical Correlation Analysis 2 (ORCCA2)

Input: X ∈ Rn×dx ,Y ∈ Rn×dy , the feature map φ(·, ·), an integer M0,
an integer M , the prior densities px(ω) and py(ω), the parameter µ >
0.

1: Draw samples {ωx,m}M0
m=1 according to px(ω), and {ωy,m}M0

m=1 according to py(ω),
respectively.

2: Construct the matrices

Q = (Z>x Zx + µI)−1Z>x Zy

P = (Z>y Zy + µI)−1Z>y Zx.

where Zx and Zy are defined in (1).
3: Let for i ∈ [M0]

q̂x(ωx,i) =
[QP]ii

Tr [QP]
.

The new weights q̂x = [q̂x(ω1), . . . , q̂x(ωM0
)]>.

4: Let for i ∈ [M0]

q̂y(ωy,i) =
[PQ]ii

Tr [PQ]
.

The new weights q̂y = [q̂y(ω1), . . . , q̂y(ωM0)]>.

5: Select top M features with the highest scores from each of the pools {ωx,i}M0
i=1 and

{ωy,i}M0
i=1, according to the new scores q̂x and q̂y to construct the transformed matrices

Ẑx ∈ Rn×M and Ẑy ∈ Rn×M , respectively, as in (1).

Output: Linear canonical correlations between Ẑx and Ẑy (with regularization parameter
µ) as in (6).

1

I If we use linear kernel for Y domain, the center matrix can be simplified and we call
that algorithm ORCCA1.

I ORCCA2 is designed for nonlinear kernel in Y domain.
I The algorithms are derived through replacing the true kernel K in (7) with ZZ>.

Numerical Experiments

Benchmark Algorithms:
I Random Fourier Features (RFF) with φ = cos(x>ω + b) as the feature map to

approximate the Gaussian kernel.
I Orthogonal Random Features (ORF) with φ = [cos(x>ω), sin(x>ω)] as the feature

map.
I Leverage Score (LS) with φ = cos(x>ω + b) as the feature map.
I Energy-based Exploration of Random Features (EERF) with φ = cos(x>ω + b) as

the feature map. EERF only works for supervised learning and is only suitable for
comparison with ORCCA1.

Practical Consideration:
I We work with empirical copula transformation of datasets.
I For X domain, the variance of random features σx is set to be the inverse of

mean-distance of 50-th nearest neighbour (in Euclidean distance), σy = σx .
I For EERF, LS, and ORCCA2, the pool size is M0 = 10M.
I The regularization parameter λ for LS is chosen through grid search.
I The regularization parameter is set to by µ = 10−6.
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Figure: The plot of total canonical correlations obtained by different algorithms versus the number of features.

Performance: Judging from the plots, choosing B according to our theory will give a
significant boost in increasing the total canonical correlations.

Current and Future Directions

Together with another member of the triad, Dr. Simon Foucart (MATH), we are
investigating learning problems from an Optimal Recovery perspective. This framework
considers learning with non-random data, where generalization in statistical sense is no
longer applicable. We have looked at the notion of worst-case error in Hilbert spaces and
showed that Optimal Recovery provides a formula which is user-friendly from an
algorithmic point-of-view. Our future directions include specific problems arising in Optimal
Recovery, such as robustness to measurement noise, over-parameterized learning,
nonlinear hypothesis classes, and beyond.
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