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Introduction

* Markov Decision Processes (MDPs) are useful to model

real-world stochastic systems

* Finding shortest path in a grid world

 However, there are physical limitations in many cases

» Automated vehicles with no-collision constraint (safety)

* Arobot avoiding hitting walls while wandering around (safety)

 Communication networks with link capacity constraints
(transmitter safety constraints)

* Modeled by Constrained Markov Decision Processes

Constrained Markov Decision Process

* A finite-horizon CMDP is a tuple M =< S,A,P,r,c,C, sy, H >
« §: state space. A: action space. P: transition kernel.
* r:Immediate reward matrix. c: immediate cost matrix.
« (C: constraint bound with N constraints. s,: initial state
* H: horizon length
* Value function for CMDP M under a policy nr:

* Vi (so) = E[XnZo7(sh ap)|an~m(s,., h)]

* Constraint function i for CMDP M under a policy
’ CZ,To(So) = ~[Z’,;’;5 c(i, sp, ap)|ap~m(sp,., h)]

 We solve

 maxV;(sy) s.t.
T

(so) <C Vi={1,..,N}

* Assumption: Problem is feasible
» Solution to this problem may not be a deterministic policy [1]
* Also depends on initial state distribution [1]

Constrained Reinforcement Learning

» Constrained-RL problem formulation is identical to CMDP
problem, but without knowing system parameters

» A naive way is to sample each state-action and obtain P

* This approach works for unconstrained MDPs

A CMDP with estimated model might not necessarily be
feasible

* Need to expand the transition kernel space by amount of
and solve "Optimistic Planning” problem
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* Thus, the problem would become feasible with high
probability

CRL Solution Overview

* Here, we present two model-based algorithms
» Offline: Optimistic Generative Model Based Learning,
Optimistic-GMBL
* Online: Online Constrained Reinforcement Learning, Online-
CRL

» Both algorithms solve “Optimistic Planning” problem below

. rﬂr},el;(V’g(SO) s.t. C'To(sp) <C; Vi={1,..,N}

« V' and C; are defined with respect to any P’ inside the
expanded transition kernel space

Optimistic-GMBL

 |nputeandé
» Set visitation frequencies to 0
» for each (s,a):
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» Construct estimated transition kernel P

» Construct class of CMDPs using P and inputs of algorithm

» Solve Optimistic Planning problem

« Sample that (s, a),

Optimistic- GMBL satisfies the PAC result with sampling
budget of
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Online-CRL

 |nputeandé
« Set visitation frequencies to 0O
* while there is (s, a) with less visitation frequency:

 Construct estimated transition kernel P

» Construct class of CMDPs using P and inputs of algorithm

» Solve Optimistic Planning problem

 Employ the optimistic policy and collect data to update
visitation frequencies

Online-CRL satisfies the PAC result with sampling
budget of
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Experimental Result

5 x5 Grid Network

* Horizon length of 10

» Use of action “Right” is limited by 2

* Online-CRL and Optimistic-GMBL have equal
performance in terms of Value function

* Online-CRL is requires less sampling budget compared to
Optimistic-GMBL in terms of Constraint violation
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