Learning with Safety Constraints: Sample Complexity of Reinforcement Learning for Constrained MDPs

Introduction

- Markov Decision Processes (MDPs) are useful to model real-world stochastic systems
- Finding shortest path in a grid world
- However, there are physical limitations in many cases
 - Automated vehicles with no-collision constraint (safety)
- A robot avoiding hitting walls while wandering around (safety)
- Communication networks with link capacity constraints (transmitter safety constraints)
- Modeled by Constrained Markov Decision Processes

Constrained Markov Decision Process

- A finite-horizon CMDP is a tuple $M = \langle S, A, P, r, c, \overline{C}, s_0, H \rangle$
 - S: state space. A: action space. P: transition kernel.
 - r: immediate reward matrix. c: immediate cost matrix.
 - \overline{C} : constraint bound with N constraints. s_0 : initial state
 - *H*: horizon length
- Value function for CMDP M under a policy π :
- $V_0^{\pi}(s_0) = \mathbb{E}\left[\sum_{h=0}^{H-1} r(s_h, a_h) | a_h \sim \pi(s_h, ..., h)\right]$
- Constraint function i for CMDP M under a policy π : • $C_{i,0}^{\pi}(s_0) = \mathbb{E}\left[\sum_{h=0}^{H-1} c(i, s_h, a_h) | a_h \sim \pi(s_h, ..., h)\right]$
- We solve
 - $\max_{\pi} V_0^{\pi}(s_0)$ s.t. $C_{i,0}^{\pi}(s_0) \le \overline{C}_i$ $\forall i = \{1, \dots, N\}$
- Assumption: Problem is feasible
 - Solution to this problem may not be a deterministic policy [1]
 - Also depends on initial state distribution [1]

Constrained Reinforcement Learning

- Constrained-RL problem formulation is identical to CMDP \bullet problem, but without knowing system parameters •
- A naïve way is to sample each state-action and obtain \hat{P}
- This approach works for unconstrained MDPs
- A CMDP with estimated model might not necessarily be feasible
- Need to expand the transition kernel space by amount of β and solve "Optimistic Planning" problem

Thus, the problem would become feasible with high probability

Aria HasanzadeZonuzy, Archana Bura, Dileep Kalathil, Srinivas Shakkottai

CRL Solution Overview

- Here, we present two model-based algorithms
 - **Offline:** Optimistic Generative Model Based Learning, Optimistic-GMBL
- Online: Online Constrained Reinforcement Learning, Online-CRL
- Both algorithms solve "Optimistic Planning" problem below • $\max_{M'\pi} V_0'^{\pi}(s_0)$ s.t. $C_{i,0}'^{\pi}(s_0) \le \bar{C}_i \quad \forall i = \{1, \dots, N\}$
- V' and C'_i are defined with respect to any P' inside the expanded transition kernel space

Optimistic-GMBL

- Input ϵ and δ
- Set visitation frequencies to 0
- for each (s, a):
- Sample that $(s, a), \frac{256 |S| H^3}{c^2} \log \frac{12(N+2)|S||A|H}{s}$
- Construct estimated transition kernel \hat{P}
- Construct class of CMDPs using \hat{P} and inputs of algorithm
- Solve Optimistic Planning problem

Optimistic- GMBL satisfies the PAC result with sampling budget of

 $O(\frac{|S|^2|A|H^3}{\epsilon^2}$

Online-CRL

- Input ϵ and δ
- Set visitation frequencies to 0
- **while** there is (*s*, *a*) with less visitation frequency:
- Construct estimated transition kernel \hat{P}
- Construct class of CMDPs using \hat{P} and inputs of algorithm
- Solve Optimistic Planning problem
- Employ the optimistic policy and collect data to update visitation frequencies

Online-CRL satisfies the PAC result with sampling budget of

Experimental Result

- 5 × 5 Grid Network
- Horizon length of 10
- Use of action "Right" is limited by 2

References [1] Altman, Eitan. Constrained Markov decision processes. Vol. 7. CRC Press, 1999.

$$\log \frac{N}{\delta}$$

T3: TEXAS A&M TRIADS FOR TRANSFORMATION A President's Excellence Fund Initiative

Online-CRL and Optimistic-GMBL have equal performance in terms of Value function Online-CRL is requires less sampling budget compared to

Optimistic-GMBL in terms of Constraint violation